Tag Archives: Software as a Service

Will Computers For Seniors push SaaS Adoption?

I have a controversial view that the new SaaS adoption rates will be served more by focusing on user benefits VS “tech-selling” buzzwords.  A practical example of this would be that I believe the growth in numbers of the “boomer” generation is going to drive more customers to the SaaS/IaaS platform providers.  E.G., MyGait below offers not only a computer system tuned to older user needs (magnification, large keys, etc.) but also a service program and financing that essentially signs up the buyer to a SaaS model by selling features and benefits they need.

MyGait

A combination of color coding and Input Method Editor (IME) options is perfectly suited for the older user in the US and international community.

A good working example of this is the lighting fast adoption rate in Mobile TelCo of the Windows Phone & Android applications.

Share Button

HIIPA/HITECH Compliant Cloud Services

HIPAA Network Architecture Using MSFT Azure

An example of leveraging Cloud Services is to  deploy an application that services the healthcare industry by ultilizing the Infrastructure as  Service(IaaS) model E.G., Azure:

  • To deploy a Cloud-based Azure Platform meeting HIPAA regulations, all application code segments must be designed using a web-services model where database elements and application code running in the cloud publish secure streams
  • Windows Azure allows an organization to create virtual machines (VMs) that run in Microsoft datacenters. Suppose the organization wants to use those VMs to run enterprise applications or other software that will be used by customers. We can create a SharePoint farm in the cloud, for example, or run HIIPA data management enterprise HITECH applications. To make life as easy as possible for our users, these applications would be accessible just as if they were running in an cost intensive local datacenter.
  • The Enterprise offering the Cloud Services must follow these five rules in order to stay comliant with HIIPA:
      1. Privacy
      2. Security
      3. Transaction & Code Set
      4. Unique Identifiers (Admin Simplification)
      5. Enforcement/Compliance

 

Share Button

Strategic Technology Directions

Using clear targets in various sectors, startegic vision can be achieved
Using clear targets in various sectors, startegic vision can be achieved

If an enterprise needs to establish a strategic vision that maps out a clear path to an end state vision, then specific action items can be set around well defined targets in:

  • Strategy Targets that help expand the footprint of a technology or products
  • Process Targets the sheppard teams to accomplish goals and deciplined cycles of activity
  • People Targets that help increase productivity and creativity
  • Business Targets that set fiscal milestones and performance meterics
  • Ecosystem Targets that help stimulate the health and growth of ecosystem partners and fellow travelers.

Below is an example of process targets that help:

sing Strategic Process to sheppard an enterprise
sing Strategic Process to sheppard an enterprise

Strategic Technology Planning Process

  • Review existing technical plans and strategic direction
  • Develop a Technology Mission Statement
  • Analyze Current raw Data
  • Establish Goals and Objectives
  • Develop and Implement Project Plans and Timelines (Roadmaps)
  • Disseminate, Monitor, Evaluate, Renovate the Technology Plan.
Share Button

What’s Between Now and 2035???

My Conclusion on Si Architecture Trends and thier ecosystem impact

Today’s Si companies must track the key trends in Si technology development, assembly test, Nanotechnology, Cooling, Emerging Research, Virtualization, acceleration and Si Complex Architectures to help drive their product teams in close collaboration with other Si vendors to keep the enterprise in a thought leadership position contemporary with the Silicon Industry along with consumer demands.

This blog is intended to document key technology trends and issues I feel will have a major impact betwen now and 2035. The following areas will be covered:

Silicon technology, architecture  processes and innovation

  • Lithography Evolution enables “Moore than Moore”
  • Size, Nano-techniques & Subatomic wire
  • Cooling via refrigeration or wind
  • Cores, components and the Si complex
  • Thinner materials E.G., nanotubes & self assembly
  • Faster Transistors E.G., Ultrathin Graphene
  • Optical Computing, Molecular Computing
  • Quantum Computing, Biological Computing
TREND EXAMPLE
Integration Level Components/Chip,   Moore’s Law
Cost Cost   Per Function
Speed Microprocessor   Throughput
Power Laptop   or Cell Battery Life
Compactness Small   and Light-weight Products
Functionality Nonvolatile   Memory, Imager

Software As a Service
Cloud Computing SW & HW trends to watch
System Architecture

  • System Drivers
  • Design
  • Mixed-signal Tech in Wireless Communications
  • Emerging Research Devices
  • Front End Processes
  • Lithography
  • Interconnect
  • Factory Integration, Assembly & Test.

Enterprise IT Architecture
Applications Infrastructure as it relates to all of the above.

Share Button