Tag Archives: IHV

Mobile World is meeting in Barcelona in March

Over the course of four days, 2-5 March 2015, Mobile World Capital Barcelona will host the world’s greatest mobile event: Mobile World Congress.   See this website for more info: http://www.mobileworldcongress.com/

The mobile communications revolution is driving the world’s major technology breakthroughs. From wearable devices to connected cars and homes, mobile technology is at the heart of worldwide innovation. As an industry, we are connecting billions of people to the transformative power of the Internet and mobilising every device we use in our daily lives.

In short, the hole world is on The Edge of Innovation, and the possibilities are endless. The 2015 GSMA Mobile World Congress will convene industry leaders, visionaries and innovators to explore the trends that will shape mobile in the years ahead.

About the Event

Here are the components that make up this industry-leading event:

  • A world-class thought-leadership Conference featuring visionary keynotes and panel discussions
  • A cutting-edge product and technology Exhibition featuring more than 1,900 exhibitors
  • The world’s best venue for seeking industry opportunities, making deals, and networking
  • App Planet, the Centre of the Mobile Apps Universe, where the mobile app community gathers to learn, network and engage with innovators
  • Global Mobile Awards programme, where we recognise industry innovation and achievements
  • And, all MWC pass holders can attend 4YFN, an event focused on startups, corporations, and investors

 

Share Button

Next “BIG THING” for Apps = Inteligent Network Adaptors

Next-Gen "Smart" Server AdaptorAs heterogeneous computing starts to grow, intelligent networking will be the facilitators of smart enterprise systems architecture. Basically hardware vendors are beginning to put intelligent silicon on network adaptors.  This provides the ability through deep packet inspection to realistically provide Network Function Virtualization (NFV) and true Software Defined Networks (SDN) as a part of hardware/software computing infrastructure.  This requires an intelligent NIC, Software Defined Networks (SDN) & Web Services/Cloud Servers must be engineered to “be aware” of the intelligence in the hardware so that software can make smart choices based on business logic context.

See more information about this trend here:
http://www.edn.com/design/wireless-networking/4422820/Next-gen-intelligent-application-adapters-for-100–network-programmability-?goback=%2Egde_35866_member_5798174629294006275#%21

Share Button

Microsoft buys Nokia… So what?

Various Nokia Windows Phones
Various Nokia Windows Phones

Now that Microsoft intends to buy Nokia and get into the handset market as a manufacturer rather than just an OS provider, what does this mean?  Here is Microsoft’s Rationale:http://www.microsoft.com/en-us/news/Press/2013/Sep13/StrategicRationale.aspx

Here is a copy of Ballmer’s internal email to all Microsoft employees:

From: Steve Ballmer
To: MS FTEs
Date: Sep. 2, 8:00 PM PDT (Sep. 3, 6:00 AM EET)
Subject: Accelerating Growth

We announced some exciting news today: We have entered into an agreement to purchase Nokia’s Devices & Services business, which includes their smartphone and mobile phone businesses, their award-winning design team, manufacturing and assembly facilities around the world, and teams devoted to operations, sales, marketing and support.

For Microsoft, this is a bold step into the future and the next big phase of the transformation we announced on July 11.

We are very excited about the proposal to bring the best mobile device efforts of Microsoft and Nokia together. Our Windows Phone partnership over the past two and half years has yielded incredible work – the stunning Lumia 1020 is a great example. Our partnership has also yielded incredible growth. In fact, Nokia Windows Phones are the fastest-growing phones in the smartphone market.

Now is the time to build on this momentum and accelerate our share and profits in phones. Clearly, greater success with phones will strengthen the overall opportunity for us and our partners to deliver on our strategy to create a family of devices and services for individuals and businesses that empower people around the globe at home, at work and on the go, for the activities they value most.

We have laid out Microsoft’s strategic rationale for this transaction in a presentation that I encourage you to read.

This is a smart acquisition for Microsoft, and a good deal for both companies. We are receiving incredible talent, technology and IP. We’ve all seen the amazing work that Nokia and Microsoft have done together.

Given our long partnership with Nokia and the many key Nokia leaders that are joining Microsoft, we expect a smooth transition and great execution.

As is always the case with an acquisition, the first priority is to keep driving through close, which we expect in the first quarter of 2014, following approval by Nokia’s shareholders, regulatory approvals, and other closing conditions.

But I also know people will have some questions about what happens post-close. While details aren’t final, here is what we know, and how we’re generally approaching integration:

 

1. Stephen Elop will be coming back to Microsoft, and he will lead an expanded Devices team, which includes all of our current Devices and Studios work and most of the teams coming over from Nokia, reporting to me.

2. Julie Larson-Green will continue to run the Devices and Studios team, and will be focused on the big launches this fall including Xbox One and our Surface enhancements. Julie will be joining Stephen’s team once the acquisition closes, and will work with him to shape the new organization.

3. As part of the acquisition, a number of key engineering leaders will be joining Microsoft from Nokia, reporting to Stephen in his new capacity:

  

· Jo Harlow, who will continue to lead the Smart Devices team

  

· Timo Toikkanen, who will continue to lead the Mobile Phones team

  

· Stefan Pannenbecker, who will lead Design

  

· Juha Putkiranta, who will lead the integration effort on Nokia’s behalf

4. Regarding the sales team, we plan to keep the Nokia field team, led by Chris Weber, intact and as the nexus of the devices sales effort, so that we can continue to build sales momentum. After the deal closes, Chris and his team will be placed under Kevin Turner. We will develop a single integrated team that is selling to operators, and there may be other integration opportunities that we can pursue. Kevin will work with Chris Weber and Chris Capossela to make those plans.

5. Our operating system team under Terry Myerson will continue unchanged, with a mission of supporting both first-party and third-party hardware innovation. We are committed to working with partners, helping them build great products and great businesses on our platform, and we believe this deal will increase our partner value proposition over time. The established rhythms and ways of working between Terry and his team and the incoming Nokia team will serve us well to ensure that we do not disrupt our building momentum.

6. We are planning to integrate all global marketing under Tami Reller and Mark Penn. It is very important that we pursue a unified brand and advertising strategy as soon as possible.

7. Finance, Legal, HR, Communications, DX / Evangelism, Customer Care and Business Development will integrate functionally at Microsoft. Sourcing, customer logistics and supply chain will be part of Stephen’s Devices organization. ICM / IT will also integrate functionally for traditional IT roles. We will need to work through the implications for factory systems given the differing manufacturing processes and systems at both Nokia and Microsoft.

8. We plan to pursue a single set of supporting services for our devices, and we will figure out how to combine the great Nokia efforts into our Microsoft services as we go through the integration process.

9. There are no significant plans to shift where work is done in the world as we integrate, so we expect the Nokia teams to stay largely in place, geographically.

10. Tom Gibbons will lead the integration work for Microsoft.

While today’s announcement is big news, we have to stay heavily focused on running the current business. We have a huge fall and holiday season ahead of us, so we need to execute flawlessly and continue to drive our business forward. I have no doubt we will.

Steve

 

Share Button

When Moore’s Law is not Enough

When we look at the history of the PC industry, we see that while Moore’s Law is fantastic, it is always outpaced by consumer demand. Market expanding software solutions can be developed faster than hardware solutions to develop but are frequently performance constrained by the limits of running on general purpose processors. Eventually IHVs see a large enough market and have time for development of custom silicon to parallelize the process. This lag time between when the problem is first noticed and when it’s solved in silicon can be referred to as the “Wilson Gap” aphras coined by some Microsoft employees who worked with me and quoted my assessment as “Information consumer appetite/demand will always outpace CPU capability” which I stated in a meeting regarding complex computational transforms.

By doing a simple analysis of this “Wilson Gap” over a series of technologies we can see some very interesting patterns:

Wilson Gap analysis
Wilson Gap analysis

*Note: This illustration is based on 2011 estimates

The vertical axis represents the number of years a particular technology was on the market in software-only form before it was introduced in silicon as an ASIC (Application Specific Integrated Circuits). Based on this data I would like to postulate that companies like Microsoft & Google have direct bearing on these figures, and that in many cases they can significantly reduce the Wilson Gap. But first, let’s review the situation a little further.

How the SW Industry Fights the Wilson Gap

While the flexibility general purpose CPU offers imaginative engineers the ultimate design surface, it likewise has the inherent limitation that code must be reduced to a lowest common denominator, that being the CPU instruction set. Time and again, this limitation has caused a Wilson Gap in what consumers want and what the PC platform is able to inherently deliver.

For Many of Today’s Needs Moore’s Law is too Slow

As the previous graph illustrates, the Wilson Gap was a limiting factor in the potential market for specific technologies, when the CPU was not fast enough for the consumer demand of floating point operations. Likewise, at various times throughout PC history, the CPU has not kept up with demand for:

  • Digital Signal Processing (DSP)
  • 3D Graphics
  • SSL Processing (encompassing 3DES, RSA, AES)
  • MPEGx Encoding/Decoding
  • Windows Media Encoding/Decoding
  • TCP/IP offloading
  • XML Parsing and Canonicalization

ASICs help reduce the Wilson Gap

When Moore’s Law is too slow we traditionally rely on ASICs to fill the Wilson Gap. In all of the examples above (Math Coprocessor, DSP, 3D, 3DES, RSA, MPG, etc…) we now have fairly low-cost ASICs that can solve the performance issue. Total time to solution and time to money are far too long for current industry economic conditions. These (ASIC) processors will typically accelerate a task, off-load a task or perform some combination of the two. But for the remainder of this paper we’ll use the term “accelerate” to include acceleration that encompasses CPU off-loading.

The Downside to ASIC Solutions

Unfortunately ASICs are inherently slow to market and are a very risky business proposition. For example, the typical ASIC takes 8 to 12 months to design, engineer and manufacture. Thus their target technologies must be under extremely high market demand before companies will make the bet and begin the technology development and manufacturing process. As a result, ASICs will always be well behind the curve of information consumer requirements served by cutting edge software.

Another difficulty faced in this market is that ASIC or Silicon Gate development is very complex, requiring knowledge of VHDL or Verilog. The efficient engineering of silicon gate-oriented solutions requires precision in defining the problem space and architecting the hardware solution. Both of these precise processes take a long time.

FPGAs further reduce the Wilson Gap

A newer approach to reducing the Wilson Gap that is gaining popularity is the use of Field Programmable Gate Arrays (or FPGAs). FPGAs provide an interim solution between ASICs and software running on a general purpose CPU. They allow developers to realign the silicon gates on a chip and achieve performance benefits on par with ASICs, while at the same time allowing the chip to be reconfigured with updated code or a completely different algorithm. Modern development tools are also coming on line that reduce the complexity of programming these chips by adding parallel extensions to the C language, and then compiling C code directly to Gate patterns. One of the most popular examples of this is Handel-C (out of Cambridge).

The Downside to FPGA Solutions

Typically FPGAs are 50% to 70% of the speed of an identical ASIC solution. However, FPGAs are more typically geared to parallelize algorithms and are configurable so as to received updates, and leverage a shorter development cycle (http://www.xilinx.com/products/virtex/asic/methodology.htm). These factors combine to extend the lifespan of a given FPGA-based solution further than an ASIC solution.

A Repeating Pattern

Looking at the market for hardware accelerators over the past 20 years we see a repeating pattern of:

  1. First implemented on the general purpose CPU
  2. Migrated to ASIC/DSP once the market is proven

Next the technology typically takes one of two paths:

  1. The ASIC takes on a life of its own and continues to flourish (such as 3D graphics) outside of the CPU (or embedded back down on the standard motherboard)
  2. The ASIC becomes obsolete as Moore’s Law brings the general purpose CPU up to par with the accelerator by the new including instructions required.

Now let’s examine two well known examples in the Windows space where the Wilson Gap has been clearly identified and hardware vendors are in the development cycle of building ASIC solutions to accelerate our bottlenecks.

Current Wilson Gaps

Our first example is in Windows Media 9 Decoding; ASIC hardware is on its way thanks to companies such as ATI, NVIDIA and others. This will allow the playback of HD-resolution content such as the new Terminator 2 WM9 DVD on slower performance systems. Another example here is in TCP Offload Engines (TOE); which have recently arrived on the scene. Due to the extensibility of both the Windows’ Media and Networking stacks, both of these technologies are fairly straightforward to implement.

Upcoming Wilson Gaps – Our Challenge

However, moving forward the industry faces other technologies which don’t have extensibility points for offloading or acceleration. This lack of extensibility has lead to duplication of effort across various product teams, but not duplication in a competitive sense (which is usually good), but more of a symbiotic duplication of effort, increasing the cost of maintenance and security.

Share Button

What’s Between Now and 2035???

My Conclusion on Si Architecture Trends and thier ecosystem impact

Today’s Si companies must track the key trends in Si technology development, assembly test, Nanotechnology, Cooling, Emerging Research, Virtualization, acceleration and Si Complex Architectures to help drive their product teams in close collaboration with other Si vendors to keep the enterprise in a thought leadership position contemporary with the Silicon Industry along with consumer demands.

This blog is intended to document key technology trends and issues I feel will have a major impact betwen now and 2035. The following areas will be covered:

Silicon technology, architecture  processes and innovation

  • Lithography Evolution enables “Moore than Moore”
  • Size, Nano-techniques & Subatomic wire
  • Cooling via refrigeration or wind
  • Cores, components and the Si complex
  • Thinner materials E.G., nanotubes & self assembly
  • Faster Transistors E.G., Ultrathin Graphene
  • Optical Computing, Molecular Computing
  • Quantum Computing, Biological Computing
TREND EXAMPLE
Integration Level Components/Chip,   Moore’s Law
Cost Cost   Per Function
Speed Microprocessor   Throughput
Power Laptop   or Cell Battery Life
Compactness Small   and Light-weight Products
Functionality Nonvolatile   Memory, Imager

Software As a Service
Cloud Computing SW & HW trends to watch
System Architecture

  • System Drivers
  • Design
  • Mixed-signal Tech in Wireless Communications
  • Emerging Research Devices
  • Front End Processes
  • Lithography
  • Interconnect
  • Factory Integration, Assembly & Test.

Enterprise IT Architecture
Applications Infrastructure as it relates to all of the above.

Share Button