Tag Archives: Security

4K Video’s significant impact on; info consumers, platform vendors and content providers

As we start to see the uptake in 4K video content, suppliers of CPUs, NIC (Network Interface Cards), networks (LAN, WLAN, Wi-Fi) and storage technologies will all be struggling to “step up to the plate” in meeting the challenges of this disruptive Video format.  Also IAAS platform providers will face huge challenges to configure cloud components that can be rapidly provisioned  for 4K content or Video Streaming.  Even the security industry will be affected regarding the video surveillance infrastructure (see this Video Security Magazine article).

SD VS HD VS 4K
SD VS HD VS 4K

This is a Technologies Strategic Directions “Sleeping Inflection Point” for multiple industries, manufacturers, eworkers  and information consumers.

Ultra-high definition (UHD) resolution is 3840×2160 Pixels now used in displays and broadcast., This does not equal 4K (4096×2160 Pixels) used in digital cinema. People tend to used them interchangeably but there is a significant difference in impact on the networking bandwidth required to service consumption of 4K.

We all are aware from a display technology perspective that TVs are now offering this content.  However, how about other network and computer infrastructure components?  When will they be able to handle  the disruptive impact of 4K?

Share Button

Secure & Compliant Network Communications

As enterprises with regulatory concerns/mandates migrate to the Cloud (Private, Public, or Hybrid) compliance with regards to privacy and security will ether be barriers or demand enabling technologies.

Secure Network Copmmunications
Secure Network Communications

Tricks like leveraging encryption of data at rest while keeping active keys elsewhere will allow immediate use of the IaaS platform’s compliance methods and limit the application’s need to make drastic changes in code to accommodate compliance monitoring logic.

 

 

Share Button

HIIPA/HITECH Compliant Cloud Services

HIPAA Network Architecture Using MSFT Azure

An example of leveraging Cloud Services is to  deploy an application that services the healthcare industry by ultilizing the Infrastructure as  Service(IaaS) model E.G., Azure:

  • To deploy a Cloud-based Azure Platform meeting HIPAA regulations, all application code segments must be designed using a web-services model where database elements and application code running in the cloud publish secure streams
  • Windows Azure allows an organization to create virtual machines (VMs) that run in Microsoft datacenters. Suppose the organization wants to use those VMs to run enterprise applications or other software that will be used by customers. We can create a SharePoint farm in the cloud, for example, or run HIIPA data management enterprise HITECH applications. To make life as easy as possible for our users, these applications would be accessible just as if they were running in an cost intensive local datacenter.
  • The Enterprise offering the Cloud Services must follow these five rules in order to stay comliant with HIIPA:
      1. Privacy
      2. Security
      3. Transaction & Code Set
      4. Unique Identifiers (Admin Simplification)
      5. Enforcement/Compliance

 

Share Button

Important Trends & Challenges

Important Trends & Challenges

SRI Things Roadmap
SRI Things Roadmap
Share Button

What’s Between Now and 2035???

My Conclusion on Si Architecture Trends and thier ecosystem impact

Today’s Si companies must track the key trends in Si technology development, assembly test, Nanotechnology, Cooling, Emerging Research, Virtualization, acceleration and Si Complex Architectures to help drive their product teams in close collaboration with other Si vendors to keep the enterprise in a thought leadership position contemporary with the Silicon Industry along with consumer demands.

This blog is intended to document key technology trends and issues I feel will have a major impact betwen now and 2035. The following areas will be covered:

Silicon technology, architecture  processes and innovation

  • Lithography Evolution enables “Moore than Moore”
  • Size, Nano-techniques & Subatomic wire
  • Cooling via refrigeration or wind
  • Cores, components and the Si complex
  • Thinner materials E.G., nanotubes & self assembly
  • Faster Transistors E.G., Ultrathin Graphene
  • Optical Computing, Molecular Computing
  • Quantum Computing, Biological Computing
TREND EXAMPLE
Integration Level Components/Chip,   Moore’s Law
Cost Cost   Per Function
Speed Microprocessor   Throughput
Power Laptop   or Cell Battery Life
Compactness Small   and Light-weight Products
Functionality Nonvolatile   Memory, Imager

Software As a Service
Cloud Computing SW & HW trends to watch
System Architecture

  • System Drivers
  • Design
  • Mixed-signal Tech in Wireless Communications
  • Emerging Research Devices
  • Front End Processes
  • Lithography
  • Interconnect
  • Factory Integration, Assembly & Test.

Enterprise IT Architecture
Applications Infrastructure as it relates to all of the above.

Share Button